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Abstract: Urysohn’s lemma states that on a normal topological space disjoint closed subsets may be separated by continuous functions in 

the sense that a continuous function exists which takes value 0 on one of the two subsets and value 1 on the other one (this type of function 

is called an "Urysohn function"). In fact the existence of such functions is equivalent to a space being normal.  
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I. Introduction 

If x ≠ y are two distinct points of a space X, is there a continuous function f: X → ℝ such that f(x) ≠ f(y)? In general this may not be true. 

There may not exist continuous functions on the given space other than the constants. Let X be a space. Let τ = {ϕ, X} be a topology on X. 

Then f: X → ℝ is continuous if and only if f is constant. For each pair of distinct points, if there is an f ∈ C(X, ℝ) with f(x) ≠ f(y), we say 

that the family C(X, ℝ) separates points. This is the reason for defining the completely regular and normal spaces which ensures plenty of 

continuous functions. Indeed, the Urysohn’s lemma and its corollary, the Tietze extension theorem, provide powerful tools for constructing 

continuous functions from x to ℝ with some specified behaviour, for any normal space X. They are among the most widely used tools in 

topology.  

 

II. Case of Metric spaces 

The crucial fact here is the simple observation: If (X, d) is a metric space and x ∈ X, then the function fx(y): = d(x, y) is continuous on X. 

For by triangle inequality we have,  

 |fx(y) − fx(z)| = |d(x, y) − d(x, z)| ≤ d(x, z) 

Thus {fx: x ∈ X} is separating family of continuous function on X. More generally, we have  

 

Lemma 1: Let A be any nonempty subset of a metric space (X, d)  and x ∈ X . Define d(x, A) ≡ dA(x) = inf{d(x, a): a ∈ A}.  Then 

|dA(x) − dA(y)| ≤ d(x, y) and hence dA is uniformly continuous on X.  

  

Theorem 1: dA(x) = 0 if and only if x is a limit point of A, where A is any nonempty subset of a metric space (X, d) and dA(x) defined 

as above.  

  

Corollary 1: If A is a closed set then d(x, A) = 0 if and only if x ∈ A.  

  

Lemma 2: (Urysohn’s Lemma for Metric Spaces) 

Let A and B be nonempty disjoint closed subsets of a metric space X. Then there exists an f ∈ C(X, ℝ) such that 0 ≤ f(x) ≤ 1 for x ∈ X 

and f = 0 on A and f = 1 on B.  

Proof : For any x ∈ X, d(x, A) + d(x, B) ≠ 0. For, if it were so, then d(x, A) = 0 = d(x, B). Since A and B are closed x ∈ A and x ∈ B 

by the last corollary. This contradicts our hypothesis that A ∩ B = ϕ.  

 The function f(x) =
d(x,A)

d(x,A)+d(x,B)
 meets our requirments. 

 

Theorem 2: (Tietze Extension Theorem for Metric Spaces) 

Let Y be a closed subspace of a metric space (X, d). Let f: Y → ℝ be a bounded continuous function. Then there exists a continuous function 

g: X → ℝ such that g(y) = f(y) for all y ∈ Y and  

inf{g(x): x ∈ X} = inf{f(y): y ∈ Y},    sup{g(x): x ∈ X} = sup{f(y): y ∈ Y}. 
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Some important things which are used in the next section:  

 

Definition 1: Dyadic Rational 

A real number of the form 
m

2n, where m, n ∈ ℤ, is called a dyadic rational or dyadic fraction. 

Example 1: 
1

2
,

3

8
 are dyadic rationals but not 

1

3
.  

 

Theorem 3: Dyadic Rationals are dense in ℝ.  

Proof: Let a and b be two real numbers such that a < b. By the Archimedean Property, there exists n ∈ ℕ such that  

 0 <
1

n
< b − a, whichimplies 0 <

1

2n <
1

n
< b − a. 

Thus we have 1 < b2n − a2n. As the distance between b2n and a2n is greater than 1, there exists m ∈ ℕ such that a2n < m < b2n 

which implies that a <
m

2n < b, (2n ≠ 0). So we proved that for each open interval (a, b) ⊂ ℝ, there exists a rational number of the form 
m

2n 

which belongs to (a, b). In other words, the set of dyadic rationals is dense in ℝ.  

 

III. Case of Topological Spaces 

Definition 2: Normal Space 

Suppose that one-point sets are closed in X. Then the space X is said to be normal if for each pair A, B of disjoint closed sets of X, there 

exist disjoint open sets containing A and B, respectively.  

  

Lemma 3: A space X is normal space if and only if given a closed set F and an open set V containing F there exists an open set U such 

that F ⊂ U ⊂ U ⊂ V.  

 

Proof : Let X be normal and F, V as above. Then F and X\V are disjoint closed sets. By normality of X there exist open sets U and W 

such that F ⊂ U and X\V ⊂ W and U ∩ W = ϕ. Since U ⊂ X\W isclosed, Weseethat U̅ ⊂ X\W ⊂ V. Thus U is as required. To prove 

the converse, suppose the condition on the existence of U holds, and let A, B be two disjoint closed subsets of X. Then A ⊂ Bc ⊂ X so there 

exists U open with A ⊂ U ⊂ U̅ ⊂ Bc. But then U, U̅c are disjoint open sets with A ⊂ U and B ⊂ U̅c. So, X is normal.  

 

Lemma 4: Let X be a normal space. If A and B are disjoint closed subsets of X, for each dyadic rational r = k2−n ∈ (0,1], there is an 

open set Ur with the following properties:   

(i) A ⊂ Ur ⊂ X\B,  

(ii) U̅r ⊂ Us for r < s.  

Proof:  Let U1 = X\B. Since B is closed, U1 is open. Again A ⊂ U1 as A and B are disjoint. Now by the last lemma, there exists disjoint 

open sets V and W such that  

 A ⊂ V ⊂ V̅ ⊂ U1 and B ⊂ W. 
Let V = U1

2

. Then  

 A ⊂ U1

2

⊂ U̅1

2

⊂ U1 

Applying the same lemma once again to the open set U
1

2
 containing A and to the open set U1 containing U̅1

2

. We get open sets U1

4

 and U3

4

 

such that  

 A ⊂ U1

4

⊂ U̅1

4

⊂ U1

2

⊂ U̅1

2

⊂ U3

4

⊂ U̅3

4

⊂ U1 

Continuing this manner, we construct, for each dyadic rational r ∈ (0,1), an open set Ur with the following properties:   

(i)  U̅r ⊂ Us, 0 < r < s ≤ 1.  

(ii)  A ⊂ Ur, 0 < r ≤ 1.  

(iii)  Ur ⊂ U1, 0 < r ≤ 1.  

More formally, we proceed as follows. We select Ur for r = k2−n by induction on n. Assume that we have chosen Ur for r = k2−n, 0 <
k < 2n, 1 ≤ n ≤ N − 1. To find Ur for r = (2j + 1)2−N, 0 ≤ j < 2N−1, observe that U̅j21−N and X\U̅(j+1)21−N are disjoint closed sets. So 

once again applying to the last lemma, we can choose an open set Ur such that  

 U̅j21−N ⊂ Ur ⊂ U̅r ⊂ U(j+1)21−N. 

These Ur′s are as desired.  

 

Theorem 4: (Urysohn’s Lemma) 

Let X be a normal space; let A and B be disjoint closed subsets of X. Then there exists a continuous function  

 f: X → [0,1] 
such that f ≡ 0 on A and f ≡ 1 on B.  

Proof:  Let r be a dyadic rational in [0,1]. Let Ur′s be as in the last lemma. Now we define a function  

 f(x) = {
0 if x ∈ Ur forall r,
sup{r: x ∉ Ur}  otherwise.

 

Clearly, 0 ≤ f ≤ 1. Let x ∈ A. Since A ⊂ Ur, 0 < r ≤ 1 ⇒ x ∈ Ur, ∀r. This implies f(x) = 0. Since x is arbitrary f ≡ 0 on A.  

Again let ∈ B. Then for any dyadic rational r, x ∉ Ur. So, f(x) = sup{r: 0 < r ≤ 1} = 1. Since x is arbitrary f ≡ 1 on B. 

Now We need only establish the continuity of f. 
Let x ∈ X be such that 0 < f(x) < 1. Let ϵ > 0. Choose dyadic rationals s and t in (0,1) such that f(x) − ϵ < s < f(x) < t < f(x) + ϵ. 

Then x ∉ Up  for dyadic rationals p ∈ (s, f(x)). By the previous lemma x ∉ U̅s . On other hand x ∈ Ut . Hence W = Ut\U̅s  is an open 

http://www.ijcrt.org/


www.ijcrt.org                               © 2020 IJCRT | Volume 8, Issue 10 October 2020 | ISSN: 2320-2882 

IJCRT2010206 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 1558 
 

neighbourhood of x. 

Now we show that f(W) ⊂ (f(x) − ϵ, f(x) + ϵ). 

Let y ∈ W, then from the definition of f we see that s ≤ f(y) ≤ t. In particular |f(y) − f(x)| < ϵ for y ∈ W. Thus f is continuous.  

 

Corollary 2: Let X be a topological spaces in which all one-point sets are closed. Then X is normal if and only of every pair of disjoint 

closed sets can be separated by a continuous function in the sense that this continuous function takes value 0 on one of the two subsets and 

value 1 on the other one( such function is called an "Urysohn function").  

 

IV. Applications 

Urysohn’s lemma is a key in the proof of many other theorems, for instance:   

    • Urysohn Metrization Theorem:  IfX is a normal space with a countable basis (i.e. second countable), then we can use the 

abundance of continuous functions from X to [0,1] to assign numerical coordinates to the points of X an obtain an embedding of X into 

ℝω. From this we see that every second-countable normal space is a metric space.  

    • Tietze Extension Theorem:  Suppose A is a subset of a space X and f: A → [0,1] is a continuous function. If X is normal 

and A is closed in X, then we can find a continuous function g from X to [0,1] that is an extension of f, i.e. g|A = f.  

    • Embedding manifolds in ℝ𝐍:  A space X is called a topological n-manifold if each point x ∈ X has an open neighbourhood 

U(x) such that U is homeomorphic to an open n-ball.  

    • Paracompact Hausdorff spaces equivalently admit subordinate partitions of unity.  

  

V. Conclusion 

Urysohn’s lemma is general result that holds in a large class of topologicals spaces. This lemma is the surprising fact that being able to 

separate closed sets from one another with a continuous function is not stronger than being able to separate them with open sets. 
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